《通俗天文学》

下载本书

添加书签

通俗天文学- 第9部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
他在极轴上转动仪器,使时圈上也正好是该星的时角。然后开动导星器自动追踪星星,再向望远镜中望去,他所要找的星星便赫然在目了。
  如果读者觉得这种办法太复杂,他只要到天文台去参观一下便可看出手续是多么简单了。那样一来,他就可以在几分钟内明白什么是恒星时、时角、赤纬以及这一类的名词了。这些实际的知识是要比任何纸上的描写要更容易使人明白的。
  

望远镜的制造
现在我们来谈谈与望远镜制造有关的有趣的事,其中大半都是历史事实。我们已经说过,最大的困难、最需要天生的奇才的,便是制造物镜那一方面。只要对于正确的形式有一点极细微的差错——这毛病在物镜中只有0.00003厘米薄的一部分上——便会把像毁坏了的。
  制成镜片(也就是说把镜片磨得准确)的磨镜师的本领还决不是所需要的全部。将大玻璃盘造得足够均匀与纯净也是同样困难的实际问题。玻璃的均匀程度稍差一点,就既不能用又不好看了。
  在19世纪开始时,要把火石玻璃加工得足够均匀是个大困难。这种物质中含有大量的铅,在熔化玻璃的时候会沉下锅底,因此使下半面的折光能力比上半面大。结果,在当时,一架口径十几厘米的望远镜便要算是大望远镜了。就在当时,瑞士人奇南(Guinand)发明了一种方法制成大片的火石玻璃。也许他的成功只是由于在玻璃熔化时不停地加以有力的搅动而已。
  要利用这些玻璃盘,还需一位有相当才能的磨镜师来把它磨光,使它恰好合用。慕尼黑(Munich)的夫琅和费(Fraunhofer)便是这样一个技师,他在1820年曾造过25厘米口径的望远镜。他并不止于此,在1840年又造了两架直径38厘米口径的望远镜。这些都是空前的产品,在当时曾被认为是奇迹。其中之一为俄国普尔柯沃天文台所得;另一架为哈佛天文台(Harvard Observatory)所得,直到五六十年后还可使用。
  夫琅和费死后,在一个不知名的地方出现了一位杰出的后继者,麻省剑桥港(Cambridgeport,Mass.)的肖像画家克拉克。这个人几乎未受初步的专门技术教育,又未受运用光学器具的训练,却成就了伟业,这也足可证明天赋才能的重要了。他好像对于这问题的本质有天生的完整概念,又加以超人的锐利眼力,遂得以解决了问题。那种不可抗拒的思想(这恰好是天才的标志)驱使着他,从欧洲买来一些做小望远镜所必需的粗玻璃盘,造成了一副很令人满意的10厘米口径的望远镜。
  当他透镜的卓越使他出名了以后,克拉克又开始制造一架空前巨大的折射望远镜。这便是在1860年左右完成的为密西西比大学而造的46厘米口径的大望远镜。这架望远镜完工尚待试验的时候,他的儿子乔治?克拉克(George B. Clark)曾用它在他的工厂中观测天狼星的伴星(因为这颗伴星对天狼星有引力,人们早知其存在,却还从未看见过它)。美国内战爆发后,密西西比大学未能得到这架望远镜,遂被芝加哥人买去。它曾经是埃文斯通(Evanston)的迪尔波恩天文台(Dearborn Observatory)的主要工具。
   。 想看书来

大型折射望远镜
19世纪末,随着工艺水平的提高,各国关于光学玻璃的制造大加改良,随之出现了一个制造大口径折射望远镜的高潮。有不少的专家显现他们的才能,制成精美巨大的透镜。世界上现有的8架70厘米以上的折射望远镜,其中7架是在1885年到1897年期间建成的。它们中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。
  英国陆续制造出越来越大的玻璃片,制造者是奇南的女婿费尔。克拉克用这些玻璃片制成更大的望远镜。第一个是为华盛顿的海军天文台造的66厘米口径的望远镜,还有一个大小相当的为弗吉尼亚大学而造。以后便是为俄国普尔柯沃天文台造的76厘米口径的望远镜。又为加利福尼亚的里克天文台(Lick Observatory)造了91厘米口径的望远镜。
  费尔死后,玻璃制造的职务又由曼陀伊斯(Mantois)来继承,他所制的玻璃的纯净与均匀是此前无人能及的。他供给克拉克玻璃片,使克拉克得以为威斯康星(Wisconsin)的叶凯士天文台造成最大望远镜的物镜。这架望远镜直径有102厘米,现在仍是全世界最大的折射望远镜。  
  在机械方面也有了很大的改善。一个参观现代天文台的人是既要惊异于观测天象有那么便利,同时也要佩服观测的高明的。大望远镜安置得那么平稳,竟可以很容易用手推动,其迅速的运动也同样是由电机来控制的。当要移动望远镜到新的位置时,天文学家只需按一按电钮,望远镜便移动到新的位置上去了。圆顶也转过去使缝隙对着新的方向;观测者所站的地板也可随意起落,使观测者得以贴近目镜的新位置。而现代的光学望远镜则充分利用了电脑自动控制的便利,可以完全由电脑来自动控制,大大提高了大型望远镜的操作性和观察性。
  有许多用大型望远镜的研究都要把目镜卸去,换上一套其他工具:有时是放一件装置底片的东西以便天象摄影研究,有时是一座分光镜以便分析天体的光,有时是一种特殊的装置来记录天体辐射的强度。望远镜的重要作用便是收集光,把光集中在一个焦点上,使人可以用上述或其他种种方法来研究。有的望远镜,例如威尔逊山天文台(Mount Wilson Observatory)的塔式望远镜是固定的。活动的镜子将天体的光一直引到望远镜上,再由望远镜将光集中于下面焦点上以便于实验室中的研究。
  txt电子书分享平台 

反射望远镜(1)
我们已经知道,在折射望远镜中,物镜是一具透镜,或许多透镜的组合,安置在镜筒的上端。它将星光折射到接近镜筒下端的焦点上去,在那儿形成一个影像,这影像可以用目镜来看,可以摄影,也可以用其他方法研究。伽利略(Galileo)所用的最早的望远镜以及那个时代所用的望远镜都是折射望远镜。这种望远镜经过了消色方法改良后的形式仍有最普遍的用途。
  在反射望远镜中,物镜是一凹镜,安置在镜筒最下端。它将星光反射到接近镜筒上端的焦点上去。现在发生了必须解决的困难:要看焦点上的像,观测者必须从上面向镜中望去。如果他俯在镜筒上看,他便要看到他自己的影子在镜中了。他的头和肩都会遮去大部分射来的星光。因此必须想出方法来使焦点到筒外去,才能充分测得星的像。不同的方法结果造成不同形式的反射望远镜。现在应用的有主焦点系统、牛顿系统、卡塞格林系统、格雷果里系统、折轴系统等。本章介绍其中两种:一是牛顿式(Newtonian),一是卡塞格林式(Gassegrainian)。
  牛顿式反射望远镜将一面小镜斜放在镜筒中接近筒顶的焦点之内。这面镜的反光面正好和望远镜的主轴成45度角,从大镜射来会聚的光柱再向旁边反射到镜筒边上去。在那儿可以用平常的目镜来看,或者摄影。
  因此,用牛顿式反射望远镜的观测口便在镜筒上端左边附近。观测者用目镜看去的方向正与他所观测的星星成直角。大型反射望远镜的观测台连在旋转圆顶上,正对着缝隙,很容易起落,使观测者能在适当的位置上去看望远镜所指向的任何方向。
  卡塞格林式则有一较小的略显凸型的反射镜片放在主镜与其焦点之间。小镜把会聚的光柱再反射回去射向大镜,从大镜中央一小开口处通过,在镜后形成焦点,就在这儿安放目镜。用这种望远镜的观测者朝向他所观测的物体望去,正如同用折射望远镜一样。有许多反射望远镜是既可用成牛顿式,又可用成卡塞格林式的。
  反射望远镜有许多优点,例如没有色差、观测波段宽、比折射望远镜更易制造等。但它也存在固有的不足:如口径越大视场越小,物镜需要定期镀膜等。现代的大口径光学望远镜大都是反射式的。
  反射镜在三百多年前才广为采用,虽然其中的不同形式的原理已在更早五十年就由牛顿(Newton)、卡塞格林(Gassegirain)及其他人说明过了。威廉?赫歇耳爵士(Sir William Herschel)制造了不少的反射望远镜,还用了几架来考察天象。一百多年前,爱尔兰业余天文学家罗斯爵士(Lord Rosse)有一架直径1.8米的大反射望远镜,在当时已是巨无霸了。这架大望远镜为人们所知,尤其是因为它第一次看到了有些遥远天体的旋涡结构,那些天体后来就叫做漩涡星云。
  早期反射望远镜的镜子是用金属盘(speculum meta)做成的。当镜面暗了的时候还须再磨光。赫歇耳、罗斯等人的大望远镜的机械部分相比现代的来说是非常粗糙的。它们并不能忠实地追随天体的西移运动,这对于摄影是十分关键的,或者说,其实在几乎所有现代天文观测中都是很重要的。
  

反射望远镜(2)
约在二百年前金属才被玻璃代替。将圆玻璃的一面磨成所需要的形状是镜片的基础——它的曲面上则需镀一层极薄的银膜或铝膜。它对红外区和紫外区都有较好的反射率,适于在较宽的波段范围研究天体的光谱和光度。镀银(铝)面暗淡不明时,可以很容易换上新的。实用的反射望远镜,为了避免像差,视场一般比较小,为了扩大视场,常常增
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架