《全球通史(下册)》

下载本书

添加书签

全球通史(下册)- 第48部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
“作于航海有用的天文观测”。1698年,英国海军部委派威廉·丹皮尔去“新荷兰”即澳大利亚探险。丹皮尔不仅对自然地理和动植物作了精确的观察记录,而且还增加了原有的水文学、气象学和地磁学方面的知识。探险的兴趣稳步增长;经皇家学会的提议,詹姆斯·库克于1768年奉命到南太平洋的塔希提岛观察金星凌日的情况。库克的以后几次旨在找到一个南极大陆的航海没有达到目的,但是,这几次航海不仅提供了有关澳大利亚海岸、新西兰海岸和太平洋海岸的新知识,而且还给予了其他具有科学价值的情报。也许要特别提到的是,库克船长在其首次航海中,有三分之一以上的手下人死于疾病,主要是坏血病。到他进行以后几次航海时,医学知识已进步,因此,海员的饮食中增加了柑桔属水果,结束了令人畏惧的坏血病。
  四、化学革命,1770…1850年
  在18世纪的最后25年中开始进行的工业革命对英国和欧洲的经济、最终对世界的经济,已发生了深远的影响。工业革命还影响了科学革命,并转而受到科学革命的影响。不过,应该强调的是,在整个18世纪和19世纪的大部分时间中,这种影响几乎只是朝着一个方向——从工业到科学的方向进行。纺织工业的许多发明是由未受教育的技工作出的;由于有利的经济环境,他们找到了发挥自己的天赋才能的机会。在这些早期的年代里,科学以从属的身份为工业服务。例如,当布匹的增大了的生产超过天然的植物染料的有效供应时,科学便被要求提供人造代用品。同样,当从家庭酿酒到大规模酿酒的转变导致灾难性的失败时,科学又被要求去找出原因和解决办法。对科学的这一类要求大大地有助于科学的发展。以下这一事实可证明工业和科学间的亲密关系:18世纪后期和19世纪初叶的大部分科学进步不是象在17世纪那样来自牛津、剑桥和伦敦,而是来自利兹、格拉斯哥、爱丁堡、曼彻斯特、尤其是伯明翰。
  蒸汽机的情况是一个重要的例外。1769年,詹姆斯·瓦特采用了一个始终保持低温的单独冷凝器,以后不久,又用曲轴将蒸汽机的往复运动变为旋转运动,这样,他利用技术独创性和科学知识的结合,将蒸汽机的效率提高到一个适当的水平。如果不是可得到蒸汽机的相对无限的动力,工业革命完全有可能在仅仅增加纺织品生产的速度后便渐渐消失,就象发生在中国那样;在中国,早几个世纪时曾取得类似的技术进步。
  19世纪前半世纪中取得进步最多的一门科学是化学,这在一定程度上是因为化学与组织工业有密切联系,纺织工业在那数十年间经历了非常迅速的发展。化学可追溯到人类文明的最早阶段,追溯到出现烹调技艺和金属加工技术、出现药草的采集和药物的提取时。从一开始起,人们就因寻找把戏金属变为黄金的手段、寻找可以发现治愈人类一切病痛的长生不老药的方法而转移了化学的目标。虽然这些试图注定要失败,但它们仍然揭示了许多化学物质和化学反应。这些东西后来被传到西欧人那里,主要是从中国和穆斯林世界传去的。
  那时以前,希腊人已提出一种理论体系,该体系认为有四种基本元素——土、火、气、水,它们以循环的方式依次转化18世纪期间,大部分注意力集中在燃烧问题上——物质燃烧时会发生些什么呢?由于物质消失在烟和火焰中、留下了灰烬,人们断定,无论如何,在燃烧过程中有某种东西释放出来。这种东西长期被称为硫,并被赋予燃素即火的要素的名称。在对气体的研究揭示出空气是一种较向来所想象的要复杂得多的物质以前,这观念一直支配着化学思想。科学家们被吸引到气体问题上,是由于矿井和沼泽中存在着能用气泡加以收集并能燃烧的易燃空气。早在1755年,爱丁堡的约瑟夫·布莱克就通过加热石灰石而成功地分离出二氧化碳。然后,1781年,亨利·卡文迪什证明水是由两份氢和一份氧组成。接着,约瑟夫·普里斯特利(1733-1804年)又取得重要进展;他分离出氧,并证明正是氧元素在燃烧和呼吸中被消耗。他还进一步证明,在日光下,绿色植物从它们吸收的二氧化碳中分解出氧。从而,他解决了由产氧的植物与产二氧化碳的动物的平衡引起的碳循环的问题。
  从气体研究工作中引出完备结论的是杰出的化学家安托万·洛朗·拉瓦锡(1743…1794年),他在法国革命期间牺牲于断头台。拉瓦锡的典型的氧化实验非常简单。他将汞放在一个装有空气的密封罐子里加热,发现他得到了氧化汞,并发现空气的量减少了五分之一,亦即失去了空气中氧的成分。然后,拉瓦锡加热氧化汞,再一次获得汞加氧。他极仔细地称其所有物质的重量,发现每道步骤后失去或获得的重量等于燃烧过程中增加或减去的氧的重量。因而,他能摒弃传统的燃索说,用其著名的平衡原理来取代。
  我们可以规定这样一个无可否认的原理:在技术和自然界的全部活动中,没有什么东西被创造出来;在实验以前和实验以后,存在着同样分量的物质;种种元素的质量和分量正好依然如故;除了这些元素的结合方面的变化和改变以外,没产生什么东西。
  这样,拉瓦锡使化学先前的所有混乱现象变为一条元素结合定律。他在自己于1789年出版的教科书《化学大纲》中,提供了至今仍被使用的全新的术语。拉瓦锡将化学安置在坚固的科学基础上,因此,他的后继者知道了他们正在做什么、正在朝哪里进发。
  在拉瓦锡的后继者当中,杰出人物要数约翰·道尔顿(1766…1844年)和瑞典化学家乔恩斯。雅各布。贝采利乌斯(1779…1848年)。道尔顿正式提出了有关物质的原子论(氧原子与氢原子结合而形成水);贝采利乌斯通过把电流应用于化合物、将它们电解(金属移向阴极,非金属移向阳极),分离出许多新元素。贝采利乌斯还将近代符号系统引入化学,从而极大地促进了化学工作。他利用诸元素的拉丁名字的第一个字母或前两个字母作为元素的符号。
  19世纪的另一重要进步是出现了有机化学。原来,化学家们认为有机化合物——由生物产生的碳氢化合物——是由一种“生命力”以某种方式控制的。但是,随着化学家们发现有机化合物能用合成法合成,这一看法被抛弃了。1828年,弗里德里希·维勒取得了第一个成功,合成了见于尿中的有机物质尿素。他没有借助于肾,是通过普通的化学方法从无机化合物中获得尿素。他的朋友贾斯特斯·冯·李比希(1803…1873年)做了非常宝贵的工作,他证明植物从土壤中摄取的养料是由氮、磷酸盐和盐组成的。因而,他能制备出他曾用来使一块荒地肥沃并成为多产的园圃的化合物,为大规模的肥料工业的发展扫清了道路。
  对工业的另一重要贡献由英国化学家威廉·亨利·珀金(1838-1907年)作出。1856年,他在寻找奎宁的代用品时,偶然发现了第一种人造苯胺染料——品红。他的发现在英国受到忽视;在英国,化学仍仅仅是少数人的业余消遣,化学行业以“注重实际”而自豪。然而,德国工业界较关心科学的厂长们看出,珀金的发现能为气体工业一向作为废品的煤焦油提供一条宝贵的出路。由于他们资助这项研究,许多合成染料给制造出来,提供了巨大的利润。到第一次世界大战时,德国人已拥有世界上最先进的化学工业,实际垄断了合成染料的生产。
  对工业来说,同样重要的是法国杰出的化学家路易·巴斯德(1822…1895年)的工作。他在里尔大学工作期间,当地酒厂老板曾纷纷向他请求帮助,因为他们在从甜菜中提取乙醇时遇到了麻烦——果浆往往莫名其妙地变坏了。巴斯德没有找到化学上的解释,就用显微镜检查麦芽浆,发现上面满是奇怪的、伸长的生长物,而未受损害的麦芽浆上则是圆的小球。通过实验室证明,他指出了如何才能控制这些有害的生长物、阻止它们妨碍发酵。由于这一经历,他做了进一步的实验,使他能驳斥传统的生物自然发生说,提出现在公认的生源论——生物只能通过生物的繁殖产生——来取代。为了证实生源论,他指出,通过排除空气中看不见的微生物,能够使肉体物质和植物性物质不腐败。这一点后来成为大规模的罐头食品制造工业的基础。
  1865年,巴斯德接受了一个更艰巨的任务。法国蒸蒸日上的丝绸工业由于蚕的一种神秘的疾病而正遭到毁灭的威胁。当巴斯德开始调查研究时,他并不知道蚕是什么东西,也不知道一条丑陋的毛虫以后会变成一只美丽的蛾。但是,经过一段时期的深入细致的探究,他发现疾病是由生活、成长在蚕体内的一种微生物引起的。他很快找到了治疗办法,丝绸工业得救了。巴斯德接着为家畜的炭疽病、特别惊人的是为人的狂犬病制备血清。此外,由于他的疾病病菌说的普及,人们采取了卫生预防措施,使有可能控制由来已久的灾祸——伤寒、白喉、霍乱、鼠疫和疟疾。这些医学上的进步产生了深远的影响,首先是在欧洲,然后是在全世界,导致人口迅速增长。
  五、生物学革命,1850—1914年
  正如牛顿因发现支配宇宙中的物体的定律而统治17世纪的科学那样,查尔斯·达尔文(1809—1882年)因发现支配人类本身进化的规律而统治19世纪的科学。
  然而,进化的思想对达尔文来说,决不是新的:在他以前,这思想已被提出并应用于科学的各领域。让·德·拉马克(1744-1829年)较早时候就已向一种传统的观念挑战;这种观念认为,一度被创造出来、此后一直存在下去的物种具有不可改变的稳定性。拉马克想象有一种从蠕虫到人类的全面进化,并试图
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架